A ZMP Feedback Control for Biped Balance its Application to In-Place Lateral Stepping Motion

نویسندگان

  • Satoshi Ito
  • Shinya Amano
  • Minoru Sasaki
  • Pasan Kulvanit
چکیده

Many biped robot control schemes adopt a zero moment point (ZMP) criterion, where the motion is initially planned as the positional trajectories such that ZMP stays within the support polygon, while the feedback control of each joint is later applied to follow the planned reference motion. Although this method is powerful, the ZMP is not always controlled in a feedback manner. Namely, when the environment such as the gradient of the ground varies, the planned motion may cause the tumble and so replanning or modification is sometimes required in order to avoid it. With respect to the environmental variations, the ZMP trajectory is invariant in the lateral plane of the biped robot, in which the ZMP moves from the one side to the other and vice versa. From this point of view, we propose a biped control method for the frontal plane motion based on the ZMP position feedback . It does not required the reference motion of the upper body and the motion replanning or modification of the reference motion are free against environmental variation. This method is applied in the in-place stepping motion and the stability of this method is examined analytically as well as by computer simulations. Finally, the effectiveness of this method is demonstrated by the robot experiment with some improvement points.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Low Friction Demanding Approach in Gait Planning for Humanoid Robots During 3D Manoeuvres

This paper proposes a gait planning approach to reduce the required friction for a biped robot walking on various surfaces. To this end, a humanoid robot with 18 DOF is considered to develop a dynamics model for studying various 3D manoeuvres. Then, feasible trajectories are developed to alleviate the fluctuations on the upper body to resemble human-like walking. In order to generate feasible w...

متن کامل

Real-time Walking Pattern Generation for a Biped Robot with a Hybrid CPG-ZMP Algorithm

Biped robots have better mobility than conventional wheeled robots. The bio-inspired method based on a central pattern generator (CPG) can be used to control biped robot walking in a manner like human beings. However, to achieve stable locomotion, it is difficult to modulate the parameters for the neural networks to coordinate every degree of freedom of the walking robot. The zero moment point ...

متن کامل

Real time motion generation and control for biped robot -4th report: Integrated balance control-

A controller for biped running has to consider varying vertical ground reaction force while satisfying the horizontal ground reaction force and moment limits. We propose a design technique for feedback gains to stabilize the upper body position under varying vertical ground reaction force. We also propose an extended model ZMP control method which uses horizontal and rotational acceleration of ...

متن کامل

Humanoid Gait Synthesis with Moving Single Support Zmp Trajecories

The control of a biped humanoid is a difficult task due to the hard-to-stabilize dynamics. Walking reference trajectory generation is a key problem. Reference generation techniques with the so-called Linear Inverted Pendulum Model (LIPM) are reported. Improved versions of the LIPM based reference generation are obtained by applying the Zero Moment Point (ZMP) Criterion, widely employed in the s...

متن کامل

SVR Controller for a Biped Robot with a Human-like Gait Subjected to External Sagittal Forces

This paper describes the control of a biped robot that uses an SVR (Support Vector Regression) for its balance. The control system was tested subjected to external sagittal pulling and pushing forces. Biped robots have leg link structures similar to the human’s anatomy. To be able to maintain its stability under dynamic situations such robotic systems require good mechanical designs and force s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • JCP

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2008